

2018-2019 Round 1

$$\begin{array}{r} -24 + 12 + 2 = -10 \\ 2 & -1 & 4 & 2 & -1 \\ -1 & -2 & 1 & -1 & -2 \\ 3 & 6 & 2 & 3 & 6 \\ -8 + (-3) + (-24) = -35 \end{array}$$

Therefore, the determinant is -35 - (-10) = -25.

5. Answer: 81π

After completing the square, the space that Hector can roam, $(x - 4)^2 + (y - 3)^2 = 25$, has a radius of 5 feet. If Sam adds 4 feet to this, Hector's leash is now 9 feet long, which means his play area is 81π .

6. Answer: Day 8

If the pattern continues, then Sally sells 9 more vanilla ice creams and 11 more chocolate ice creams each day than the day before. Thus, the number of vanilla and chocolate ice creams sold is as follows:

Day	1	2	3	4	5	6	7	8
Vanilla	21	30	39	48	57	66	75	84
Chocolate	7	18	29	40	51	62	73	84

Thus, Sally sells the same number of vanilla and chocolate ice creams on Day 8. Alternatively, let *n* be the number of days that has passed after the first day of business. Then, 21 + 9n = 7 + 11n. Solving for *n* gives n = 7, so 7 days after the first day of business, or on the 8th day, Sally sells the same number of vanilla and chocolate ice creams.

7. Answer: $\frac{7}{4}$

Since
$$\sin^2 \theta + \cos^2 \theta = 1$$
, $\sin^2 \frac{13\pi}{3} + \cos^2 \frac{13\pi}{3} + \sin^2 \frac{14\pi}{3} = 1 + \sin^2 \frac{14\pi}{3}$. Also,
 $\frac{14\pi}{3} = \frac{2\pi}{3}$, so $1 + \sin^2 \frac{14\pi}{3} = 1 + \sin^2 \frac{2\pi}{3} = 1 + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 + \frac{3}{4} = \frac{7}{4}$.

1. Answer: 52 – 4i

 $(8+4i)(5-3i) = 40 - 24i + 20i - 12i^2$. Since $i^2 = -1$, this simplifies to 40 - 24i + 20i + 12 = 52 - 4i.

2. Answer: 32

Using the shoelace method:

Thus, the area equals $\frac{1}{2}[(0+64+0)-(0+0+0)] = 32$

Alternatively, using the distance formula:

 $\sqrt{(0-0)^2 + (0-8)^2} = 8$ $\sqrt{(0-8)^2 + (8-4)^2} = \sqrt{80} = 4\sqrt{5}$ $\sqrt{(0-8)^2 + (0-4)^2} = \sqrt{80} = 4\sqrt{5}$

These three side lengths form an isosceles triangle. The Pythagorean Theorem gives 8 as h. Using the $\frac{1}{2}bh$ formula for area and the 8 side as b, $\frac{1}{2}(8)(8) = 32$.

3. Answer: $\frac{4}{5}$

If $\cot \theta = -\frac{15}{20}$, then $\tan \theta = -\frac{20}{15}$. Since $90^\circ < \theta < 180^\circ$, $\sin \theta$ must be positive and $\cos \theta$ must be negative. So, $\sin \theta = \frac{20}{25} = \frac{4}{5}$.

8. Answer: -191

Use synthetic division:

-2	7	0	-5	0	3	-1
		-14	28	-46	92	-190
	7	-14	23	-46	95	-191

9. Answer: 85

Let *x* equal the number of Mars Macaroons, *y* equal the number of Mini Pavlovas, and *z* equal the number of Nova Bites that Agatha buys. Then, x + y + z = 68, 3x + 4y + 5z = 260, and $z = \frac{1}{3}x + \frac{1}{3}y$.

Substituting the third equation into the first equation for z gives $\frac{4}{3}x + \frac{4}{3}y = 68$, and substituting the third equation into the second equation gives $\frac{14}{3}x + \frac{17}{3}y = 260$.

Now, multiplying the new first equation by 7 and the new second equation by 2 and subtracting the first from the second gives 2y = 44, so y = 22. Substituting back into one of the equations gives x = 29. Substituting into the original third equation gives $z = \frac{1}{3}(29) + \frac{1}{3}(22) = 17$. Agatha bought 5 Nova Bites, so she paid $17 \cdot 5 = 85$ coins.

10. Answer: 15

Simplify using logarithm rules: $log_{1/3}(log_{64}(log_2(x + 1))) = log_{25} 10 - log_{25} 2 + log_{49} 7$ $log_{1/3}(log_{64}(log_2(x + 1))) = log_{25} 5 + log_{49} 7$ $log_{1/3}(log_{64}(log_2(x + 1))) = \frac{1}{2} + \frac{1}{2} = 1$ $log_{64}(log_2(x + 1)) = \frac{1}{3}$ $log_2(x + 1) = 4$ x + 1 = 16 x = 15.