Rocket City Math League
 Apollo Solutions

1. Answer: 52-4i

$(8+4 i)(5-3 i)=40-24 i+20 i-12 i^{2}$. Since $i^{2}=-1$, this simplifies to $40-24 i+20 i+12=52-4 i$.

2. Answer: 32

Using the shoelace method:
$1 / 2$

$0 \quad 64 \quad 0$

Thus, the area equals $\frac{1}{2}[(0+64+0)-(0+0+0)]=32$
Alternatively, using the distance formula:
$\sqrt{(0-0)^{2}+(0-8)^{2}}=8$
$\sqrt{(0-8)^{2}+(8-4)^{2}}=\sqrt{80}=4 \sqrt{5}$
$\sqrt{(0-8)^{2}+(0-4)^{2}}=\sqrt{80}=4 \sqrt{5}$
These three side lengths form an isosceles triangle. The Pythagorean Theorem gives 8 as h. Using the $\frac{1}{2} b h$ formula for area and the 8 side as $b, \frac{1}{2}(8)(8)=32$.
3. Answer: $\frac{4}{5}$

If $\cot \theta=-\frac{15}{20}$, then $\tan \theta=-\frac{20}{15}$. Since $90^{\circ}<\theta<180^{\circ}, \sin \theta$ must be positive and $\cos \theta$ must be negative. So, $\sin \theta=\frac{20}{25}=\frac{4}{5}$.

4. Answer: - 25

Therefore, the determinant is $-35-(-10)=-25$.
5. Answer: $\mathbf{8 1 \pi}$

After completing the square, the space that Hector can roam, $(x-4)^{2}+(y-3)^{2}=$ 25 , has a radius of 5 feet. If Sam adds 4 feet to this, Hector's leash is now 9 feet long, which means his play area is $\mathbf{8 1} \boldsymbol{\pi}$.
6. Answer: Day 8

If the pattern continues, then Sally sells 9 more vanilla ice creams and 11 more chocolate ice creams each day than the day before. Thus, the number of vanilla and chocolate ice creams sold is as follows:

Day	1	2	3	4	5	6	7	8
Vanilla	21	30	39	48	57	66	75	84
Chocolate	7	18	29	40	51	62	73	84

Thus, Sally sells the same number of vanilla and chocolate ice creams on Day 8. Alternatively, let n be the number of days that has passed after the first day of business. Then, $21+9 n=7+11 n$. Solving for n gives $n=7$, so 7 days after the first day of business, or on the 8th day, Sally sells the same number of vanilla and chocolate ice creams.
7. Answer: $\frac{7}{4}$

Since $\sin ^{2} \theta+\cos ^{2} \theta=1, \sin ^{2} \frac{13 \pi}{3}+\cos ^{2} \frac{13 \pi}{3}+\sin ^{2} \frac{14 \pi}{3}=1+\sin ^{2} \frac{14 \pi}{3}$. Also, $\frac{14 \pi}{3}=\frac{2 \pi}{3}$, so $1+\sin ^{2} \frac{14 \pi}{3}=1+\sin ^{2} \frac{2 \pi}{3}=1+\left(\frac{\sqrt{3}}{2}\right)^{2}=1+\frac{3}{4}=\frac{7}{4}$.

8. Answer: - $\mathbf{1 9 1}$

Use synthetic division:

-2	7	0	-5	0	3	-1
		-14	28	-46	92	-190
	7	-14	23	-46	95	-191

9. Answer: $\mathbf{8 5}$

Let x equal the number of Mars Macaroons, y equal the number of Mini Pavlovas, and z equal the number of Nova Bites that Agatha buys. Then, $x+y+z=68$, $3 x+4 y+5 z=260$, and $z=\frac{1}{3} x+\frac{1}{3} y$.
Substituting the third equation into the first equation for z gives $\frac{4}{3} x+\frac{4}{3} y=68$, and substituting the third equation into the second equation gives $\frac{14}{3} x+\frac{17}{3} y=$ 260.

Now, multiplying the new first equation by 7 and the new second equation by 2 and subtracting the first from the second gives $2 y=44$, so $y=22$. Substituting back into one of the equations gives $x=29$. Substituting into the original third equation gives $z=\frac{1}{3}(29)+\frac{1}{3}(22)=17$. Agatha bought 5 Nova Bites, so she paid $17 \cdot 5=85$ coins.
10. Answer: 15

Simplify using logarithm rules:
$\log _{1 / 3}\left(\log _{64}\left(\log _{2}(x+1)\right)\right)=\log _{25} 10-\log _{25} 2+\log _{49} 7$
$\log _{1 / 3}\left(\log _{64}\left(\log _{2}(x+1)\right)\right)=\log _{25} 5+\log _{49} 7$
$\log _{1 / 3}\left(\log _{64}\left(\log _{2}(x+1)\right)\right)=\frac{1}{2}+\frac{1}{2}=1$
$\log _{64}\left(\log _{2}(x+1)\right)=\frac{1}{3}$
$\log _{2}(x+1)=4$
$x+1=16$
$x=15$.

